Tuesday, March 5, 2013

Lesson 2.5

2.5 MEMORY SYSTEM IN A COMPUTER
There are two kinds of computer memory: primary and secondary. Primary memory is accessible directly by the processing unit. RAM is an example of primary memory. As soon as the computer is switched off the contents of the primary memory is lost. You can store and retrieve data much faster with primary memory compared to secondary memory. Secondary memory such as floppy disks, magnetic disk, etc., is located outside the computer. Primary memory is more expensive than secondary memory. Because of this the size of primary memory is less than that of secondary memory. We will discuss about secondary memory later on.

Computer memory is used to store two things: i) instructions to exe­cute a program and ii) data. When the computer is doing any job, the data that have to be processed are stored in the primary memory. This data may come from an input device like keyboard or from a secondary storage device like a floppy disk.

As program or the set of instructions is kept in primary memory, the computer is able to follow in­stantly the set of instructions. For example, when you book ticket from railway reservation counter, the comput­er has to follow the same steps: take the request, check the availability of seats, calculate fare, wait for money to be paid, store the reservation and get the ticket printed out. The programme containing these steps is kept in memory of the computer and is followed for each request.

But inside the computer, the steps followed are quite different from what we see on the monitor or screen. In computer’s memory both programs and data are stored in the binary form. You have already been introduced with decimal number system, that is the numbers 1 to 9 and 0. The binary system has only two values 0 and 1. These are called bits. As human beings we all understand decimal system but the computer can only understand binary system. It is because a large number of integrated circuits inside the computer can be considered as switches, which can be made ON, or OFF. If a switch is ON it is considered 1 and if it is OFF it is 0. A number of switches in different states will give you a message like this: 110101....10. So the computer takes input in the form of 0 and 1 and gives output in the form 0 and 1 only. Is it not absurd if the computer gives outputs as 0’s & 1’s only? But you do not have to worry about. Every number in binary system can be converted to decimal system and vice versa; for example, 1010 meaning decimal 10. Therefore it is the computer that takes information or data in decimal form from you, convert it in to binary form, process it producing output in binary form and again convert the output to decimal form. 

The primary memory as you know in the computer is in the form of IC’s (Integrated Circuits). These circuits are called Random Access Memory (RAM). Each of RAM’s locations stores one byte of information. (One byte is equal to 8 bits). A bit is an acronym for binary digit, which stands for one binary piece of information. This can be either 0 or 1. You will know more about RAM later. The Primary or internal storage sec­tion is made up of several small storage locations (ICs) called cells. Each of these cells can store a fixed number of bits called word length.

Each cell has a unique number assigned to it called the address of the cell and it is used to identify the cells. The address starts at 0 and goes up to (N-1). You should know that the memory is like a large cabinet contain­ing as many drawers as there are addresses on memory. Each drawer contains a word and the address is written on outside of the drawer.

Capacity of Primary Memory
You know that each cell of memory contains one character or 1 byte of data. So the capacity is defined in terms of byte or words. Thus 64 kilobyte (KB) memory is capable of storing 64 ´ 1024 = 32,768 bytes. (1 kilobyte is 1024 bytes). A memory size ranges from few kilobytes in small systems to several thousand kilobytes in large mainframe and super computer. In your personal computer you will find memory capacity in the range of 64 KB, 4 MB, 8 MB and even 16 MB (MB = Million bytes).

The following terms related to memory of a computer are discussed below:
1.  Random Access Memory (RAM): The primary storage is referred to as random access memory (RAM) because it is possible to randomly select and use any location of the memory directly store and retrieve data. It takes same time to any address of the memory as the first address. It is also called read/write memory. The storage of data and instructions inside the primary storage is temporary. It disappears from RAM as soon as the power to the computer is switched off. The memories, which loose their content on failure of power supply, are known as volatile memories .So now we can say that RAM is volatile memory.
2. Read Only Memory (ROM): There is another memory in computer, which is called Read Only Memory (ROM). Again it is the ICs inside the PC that form the ROM. The storage of program and data in the ROM is permanent. The ROM stores some standard processing programs supplied by the manufacturers to operate the person­al computer. The ROM can only be read by the CPU but it cannot be changed. The basic input/output pro­gram is stored in the ROM that examines and initializes various equipment attached to the PC when the switch is made ON. The memories, which do not loose their content on failure of power supply, are known as non-volatile memories. ROM is non-volatile memory.
3. PROM There is another type of primary memory in com­puter, which is called Programmable Read Only Memory (PROM). You know that it is not possible to modify or erase programs stored in ROM, but it is possible for you to store your program in PROM chip. Once the programmes are written it cannot be changed and remain intact even if power is switched off. Therefore programs or instructions written in PROM or ROM cannot be erased or changed.
4. EPROM: This stands for Erasable Programmable Read Only Memory, which over come the problem of PROM & ROM. EPROM chip can be programmed time and again by erasing the information stored earlier in it. Information stored in EPROM exposing the chip for some time ultraviolet light and it erases chip is reprogrammed using a special programming facili­ty. When the EPROM is in use information can only be read.
5. Cache Memory: The speed of CPU is extremely high co­mpared to the access time of main memory. Therefore the performance of CPU decreases due to the slow speed of main memory. To decrease the mismatch in operating speed, a small memory chip is attached between CPU and Main memory whose access time is very close to the processing speed of CPU. It is called CACHE memory. CACHE memories are accessed much faster than conventional RAM. It is used to store programs or data currently being executed or temporary data frequently used by the CPU. So each memory makes main memory to be faster and larger than it really is. It is also very expensive to have bigger size of cache memory and its size is normally kept small.
6. Registers: The CPU processes data and instructions with high speed, there is also movement of data between various units of computer. It is necessary to transfer the processed data with high speed. So the computer uses a number of special memory units called registers. They are not part of the main memory but they store data or information temporarily and pass it on as directed by the control unit.

 IN-TEXT QUESTIONS 2
 1. Distinguish between bit and byte.
 2. Define volatile and non-volatile memory.
 3. Write True or False:
  (a) There are two kinds of computer memory primary and secondary.
    (b) The computer takes inputs in the form of 0 and 1.
    (c) The storage of program and data in the RAM is permanent.
    (d) PROM is secondary memory.
    (e) The memories which do not loose their content on failure of power supply are known as non-volatile memories.

No comments:

Post a Comment